









物体识别(object recognition)是一个通用术语,描述一组相关的计算机视觉任务,涉及识别图像中的物体。
图像分类涉及预测图像中一个对象的类别,对象定位是指识别图像一个或多个对象的位置,并在其周围绘制边框。物体识别将这两种任务结合起来,对图像中的一个或多个对象进行定位和分类,互动旋钮设备,所以当人们提到物体检测或者目标检测时,其实指的是物体识别。
基于统计的方法与基于物体部件的方法:
根据识别方法是否对局部特征之间的关系建模,可以把识别方法分为基于统计的方法与基于物体部件的方法。
1、基于统计的物体分类方法(bow:bag of words)
bow模型严格上讲并不是一种物体识别方法,而是一种物体分类方法。这种模型的灵感来自于nlp中的bow模型。。一幅图像可以看作是一篇“文档”,而图像中提取出的特征认为是“词语”。
1)生成性方法的学习与识别
生成性的学习方法通过先验知识去拟合并解释图像中的信号。在中,有两种主要的生成性方法,一种是nb(朴素贝叶斯),另外一种是plsa(概率潜语义分析)与lda(线性判别分析)。
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,就是图像特征(feature),即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,互动旋钮制作,或者分类。然 而这个方法还是存在很多问题,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,河北互动旋钮,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,对复杂背景,遮挡,和几何变化等并不适用。
河北互动旋钮-华奕科技-互动旋钮系统由北京华奕互动科技有限公司提供。北京华奕互动科技有限公司是北京 北京市 ,电子、电工产品制造设备的见证者,多年来,公司贯彻执行科学管理、---发展、诚实守信的方针,满足客户需求。在华奕科技---携全体员工热情欢迎---垂询洽谈,共创华奕科技美好的未来。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz335699.zhaoshang100.com/zhaoshang/280440688.html
关键词: